

Basic Emergency Vehicle Operators Course

High Speed Driving

High Speed Driving

— Objectives:
\square By the end of this module, students will be able to:
\square Be able to understand the physics involved with High Speed Driving
\square Be able to identify a properly \& improperly banked road
\square Be able to properly select the safest path of travel thru a curve
\square Understand how to negotiate a curve at High Speed

High Speed Driving

- Guidelines:
\square Some emergencies may require high speed EV operation
\square Operation at speeds over the posted limit requires a high degree of skill and sound judgment.
\square This requires an additional higher level of training
\square Provide the knowledge and techniques for:
\square Driving on a curved or winding road at a safe speed
\square Pursuit Driving will be covered under the POLICE Module

High Speed Driving

— Primary Rules:
— Don't drive faster then your abilities
\square Observe posted speed limits and allow for conditions which make lower speeds necessary
[Don't let the siren control your right foot
— Avoid BRAKE FADE
\square Slowing down from a High Speed

High Speed Driving

— Curves \& Limits Imposed by the Laws of Physics:
\square The tighter the curve the slower the EV must go.
\square It is the operators job to control speed.
\square If the speed in a curve is too great
\square PHYSICS WILL WIN!

High Speed Driving

— Curves \& The Basic Laws of Physics:
\square In turns centrifugal force quadruples as speed doubles
\square When the centrifugal force is high enough the vehicle cannot follow the curve on it's intended path.
\square For every curve there is a maximum speed for successfully negotiating the turn.

High Speed Driving

\square Factors EV Operators Must Be Aware of When Dealing With Curves:
\square Local Road Familiarity
— Banked Curves
\square Decreased Radius Curves
\square Curves that crest hills or lead to an intersection

High Speed Driving

\square Banked Curves
\square The road should slant down towards the inside of the curve
\square Improperly banked curves
\square Older roads

High Speed Driving

— Things EV Operators Should Consider

- The Road Surface
\square Is it narrow
\square Cracks / Ruts / Potholes
\square Soft Shoulders
\square Change in traction
\square Curve Speed
\square Complete braking before entering the curve
\square Look for skid marks as an indicator of curve radius

High Speed Driving

— Techniques for negotiating curves at high speed — Three Key Points
\square Entry Speed \& Vehicle Position
\square Speed through the curve
— Exit Speed \& Vehicle Position

High Speed Driving

— Entry Speed \& Vehicle Position
\square Brake or decelerate to the proper entry speed before entering the curve.
\square The proper speed is different for every curve
\square Enter the curve as far to the outside of your lane as possible
\square Entering on the outside of the curve effectively increases the radius of the track for the $E V$.

\square The greater the radius, the safer the EV can take the curve.

High Speed Driving

— Entry Speed \& Vehicle Position
\square Begin the turn as early as possible
— Inexperienced drivers invariably go "too deep" into a curve before starting to corner the vehicle.
\square Establish an apex (when beginning the turn) at the last part of inside road edge (or centerline) that can be seen from the entry point.
\square The apex is the point on the inside of the curve
 where the vehicle comes closest to the road edge or centerline

High Speed Driving

— Entry Speed \& Vehicle Position
\square The assumed speed and the radius of the vehicle track for both vehicles (A \& B) are identical.
\square Vehicle "A" has started entry early and on the high side.

High Speed Driving

— Entry Speed \& Vehicle Position
\square The apex for vehicle " A " is further along the curve than the apex for vehicle "B".
\square Vehicle " B " is going to have a serious crash

High Speed Driving

— Speed Through the Curve (In the Curve)
\square The EV should be in the groove by the time the apex is reached
\square The $E V$ suspension is set for cornering in a constant radius

High Speed Driving

\square Speed Through the Curve (In the Curve)
\square The EV is close to the inside edge of the curve
\square Once in the groove, apply slight power in the curve to maintain speed.

High Speed Driving

$\square \quad$ Speed Through the Curve (In the Curve)
— Apply steady acceleration carefully

- Too much power at the drive wheels can result in loss of steering control, or cause the rear wheels to spin and lose traction

High Speed Driving

— Speed Through the Curve (In the Curve)
\square Never try to gain speed beyond the established maximum safe speed for the curve
\square For most combinations of vehicle characteristics, road conditions, radius of curves, and speed; an increase of just three miles per hour over the safe speed can cause complete loss of control.

High Speed Driving

— Exit Speed \& Vehicle Position
\square Establish the widest position or larger radius
\square Accelerate out of the curve after the apex has been reached
\square Proper exit from a curve to a straight road is where good drivers gain time.

High Speed Driving

— Exit Speed \& Vehicle Position to Another Curve
\square Establish an apex for the next curve
\square Start the process over again
\square If the radius for the next part of the curve is tighter, the operator must slow down before tightening the EV's turning radius
\square If possible, let the scrubbing action of the tires do the
 slowing. Avoid hard braking if at all possible

High Speed Driving

] Slowing from High Speeds

\square Braking distance increases dramatically with increased speed
\square When speed is doubled braking distance quadruples.

High Speed Driving

— Slowing from High Speeds

\square Techniques for slowing from high speed:
\square Do not ride the brakes - brakes are mechanical devices and should not be abused
\square The laws of physics apply always, particularly the generation of heat in reducing speed, at the brake rotor.
— Overdo it and the physics will make the EV's brakes useless
\square Be particularly cautious of long downhill grades
\square If possible use a lower gear instead of the brakes

High Speed Driving

— Stopping from High Speeds

\square Techniques for stopping high speed:
\square Braking systems are different, know the type braking system you vehicle is equipped with.
\square You never want to lock the wheels.
\square Stopping distance may be increased with locked wheels
\square Directional control may be lost.
\square Beads of rubber may build up under the wheels causing loss of traction.

High Speed Driving

— Stopping from High Speeds
\square Techniques for stopping high speed:
\square Use only the right foot for braking
\square When a stop is imminent. "cover" the brake with the right foot (toes only)
— Don't risk brake fade by riding the brake
\square Always use a smooth braking motion
— Use "threshold" braking

\square Keep pressure on until the desired reduced speed is reached

High Speed Driving

- Agency Particularities:
- Police
\square Fire
\square EMS

High Speed Driving

- Agency Particularities:
\square Police
\square Code Response
\square Traffic violators (RADAR)
\square Pursuit

High Speed Driving

— Agency Particularities:
[Fire
Large, heavy fire apparatus are especially difficult to control at high speed.

High Speed Driving

— Agency Particularities:

\square EMS

\square An ambulance/rescue vehicle with a patient aboard should never travel over the posted limit

High Speed Driving

— Summary
\square The EV operator should always attempt to drive in a manner which will not require the use of collision avoidance maneuvers. However under response conditions that involve speeds above the posted limit, the potential for collision avoidance maneuvers increases.

- REVIEW QUESTIONS

1) When stopping from high speeds an EV diver/operator should never do what with the brakes?
2) When should you begin to accelerate when heading out of a curve?
3) What are three key points for negotiating a curve at high speed?
4) When your speed doubles your braking distance does what?
5) What should your entrance position be in the beginning of the curve?

